Outlier Detection with Autoencoder Ensembles

نویسندگان

  • Jinghui Chen
  • Saket Sathe
  • Charu C. Aggarwal
  • Deepak S. Turaga
چکیده

In this paper, we introduce autoencoder ensembles for unsupervised outlier detection. One problem with neural networks is that they are sensitive to noise and often require large data sets to work robustly, while increasing data size makes them slow. As a result, there are only a few existing works in the literature on the use of neural networks in outlier detection. This paper shows that neural networks can be a very competitive technique to other existing methods. The basic idea is to randomly vary on the connectivity architecture of the autoencoder to obtain significantly better performance. Furthermore, we combine this technique with an adaptive sampling method to make our approach more efficient and effective. Experimental results comparing the proposed approach with state-of-theart detectors are presented on several benchmark data sets showing the accuracy of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fficient Variational B Ayesian Neural Net - Work Ensembles for Outlier Detection

In this work we perform outlier detection using ensembles of neural networks obtained by variational approximation of the posterior in a Bayesian neural network setting. The variational parameters are obtained by sampling from the true posterior by gradient descent. We show our outlier detection results are comparable to those obtained using other efficient ensembling methods.

متن کامل

Efficient variational Bayesian neural network ensembles for outlier detection

In this work we perform outlier detection using ensembles of neural networks obtained by variational approximation of the posterior in a Bayesian neural network setting. The variational parameters are obtained by sampling from the true posterior by gradient descent. We show our outlier detection results are comparable to those obtained using other efficient ensembling methods.

متن کامل

Good and Bad Neighborhood Approximations for Outlier Detection Ensembles

Outlier detection methods have used approximate neighborhoods in filter-refinement approaches. Outlier detection ensembles have used artificially obfuscated neighborhoods to achieve diverse ensemble members. Here we argue that outlier detection models could be based on approximate neighborhoods in the first place, thus gaining in both efficiency and effectiveness. It depends, however, on the ty...

متن کامل

Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles

Popular outlier detection methods require the pairwise comparison of objects to compute the nearest neighbors. This inherently quadratic problem is not scalable to large data sets, making multidimensional outlier detection for big data still an open challenge. Existing approximate neighbor search methods are designed to preserve distances as well as possible. In this article, we present a highl...

متن کامل

Arbitrary Discrete Sequence Anomaly Detection with Zero Boundary LSTM

We propose a simple mathematical definition and new neural architecture for finding anomalies within discrete sequence datasets. Our model comprises of a modified LSTM autoencoder and an array of One-Class SVMs. The LSTM takes in elements from a sequence and creates context vectors that are used to predict the probability distribution of the following element. These context vectors are then use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017